关于我们

质量为本、客户为根、勇于拼搏、务实创新

< 返回

hdu1159

发布时间:2022-07-27 13:55:55

Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15192    Accepted Submission(s): 629
hdu1159
Problem Description A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.    Sample Input abcfbc abfcab programming contest abcd mnp   Sample Output 4 2 0        
  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cstring>
  4. using namespace std;
  5. #define max(a,b)  ((a)>(b)?(a):(b))
  6. int dp[5001][5001];
  7. char s1[1500],s2[1500];
  8. int main()
  9. {
  10.     memset(s1,'',sizeof(s1));
  11.     memset(s2,'',sizeof(s2));
  12.     while(scanf("%s%s",s1+1,s2+1)!=EOF)
  13.     {
  14.         int i,j,len1,len2;
  15.         len1=strlen(s1+1);
  16.         len2=strlen(s2+1);
  17.         for(i=0;i<=len1;i++)
  18.             dp[0][i]=0;
  19.         for(i=0;i<=len2;i++)
  20.             dp[i][0]=0;
  21.         for(i=1;i<=len1;i++)
  22.             for(j=1;j<=len2;j++)
  23.             {
  24.                 if(s1[i]==s2[j])
  25.                     dp[i][j]=dp[i-1][j-1]+1;
  26.                 else
  27.                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
  28.             }
  29.             printf("%d ",dp[len1][len2]);
  30.             memset(s1,'',sizeof(s1));
  31.             memset(s2,'',sizeof(s2));
  32.     }
  33.     return 0;
  34. }


 


/template/Home/DawnNew/PC/Static

立即注册风纳云账号,免费体验多款产品

立即注册